9,409 research outputs found

    The influence of convective activity on the vorticity budget

    Get PDF
    The influence of convective activity on the vorticity budget was determined during the AVE VII and AVE-SESAME I periods. This was accomplished by evaluating each term in the expanded vorticity equation with twisting and tilting and friction representing the residual of all other terms. Convective areas were delineated by use of radar summary charts. The influence of convective activity was established by analyzing contoured fields of each term as well as numerical values and profiles of the various terms in convective and nonconvective areas. Vertical motion was computed by the kinematic method, and all computations were performed over the central United States using a grid spacing of 158 km. The results show that, in convective areas in particular, the residual is of comparable magnitude to the horizontal advection and divergence terms, and therefore, cannot be neglected. In convective areas, the residual term represents a sink of vorticity below 500 mb and a strong source near 300 mb. In nonconvective areas, the residual was small in magnitude at all levels, but tended to be negative (vorticity sink) at 300 mb. The local change term, over convective areas, tended to be balanced by the residual term, and appeared to be a good indicator of development (vorticity becoming more cyclonic). Finally, the shape of the vertical profiles of the term in the budget equation agreed with those found by other investigators for easterly waves, but the terms were one order of magnitude larger than those for easterly waves

    Reflexive and preparatory selection and suppression of salient information in the right and left posterior parietal cortex

    Get PDF
    Attentional cues can trigger activity in the parietal cortex in anticipation of visual displays, and this activity may, in turn, induce changes in other areas of the visual cortex, hence, implementing attentional selection. In a recent TMS study [Mevorach, C., Humphreys, G. W., & Shalev, L. Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9, 740-742, 2006b], it was shown that the posterior parietal cortex (PPC) can utilize the relative saliency (a nonspatial property) of a target and a distractor to bias visual selection. Furthermore, selection was lateralized so that the right PPC is engaged when salient information must be selected and the left PPC when the salient information must be ignored. However, it is not clear how the PPC implements these complementary forms of selection. Here we used on-line triple-pulse TMS over the right or left PPC prior to or after the onset of global/local displays. When delivered after the onset of the display, TMS to the right PPC disrupted the selection of the more salient aspect of the hierarchical letter. In contrast, left PPC TMS delivered prior to the onset of the stimulus disrupted responses to the lower saliency stimulus. These findings suggest that selection and suppression of saliency, rather than being "two sides of the same coin," are fundamentally different processes. Selection of saliency seems to operate reflexively, whereas suppression of saliency relies on a preparatory phase that "sets up" the system in order to effectively ignore saliency

    Centrifugal Breakout of Magnetically Confined Line-Driven Stellar Winds

    Full text link
    We present 2D MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the star's rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value), and also a large magnetic confinement parameter, η∗≡B∗2R∗2/M˙V∞=600\eta_{\ast} \equiv B_{\ast}^2 R_{\ast}^{2} / \dot{M} V_{\infty} = 600. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outwards. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back on to the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outwards, leading to episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly 10810^{8}K, high enough to emit hard (several keV) X-rays. Such \emph{centrifugal mass ejection} represents a novel mechanism for driving magnetic reconnection, and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like σ\sigma Ori E.Comment: 5 pages, 3 figures, accepted by ApJ

    Faithful qubit distribution assisted by one additional qubit against collective noise

    Full text link
    We propose a distribution scheme of polarization states of a single photon over collective-noise channel. By adding one extra photon with a fixed polarization, we can protect the state against collective noise via a parity-check measurement and post-selection. While the scheme succeeds only probabilistically, it is simpler and more flexible than the schemes utilizing decoherence-free subspace. An application to BB84 protocol through collective noise channel, which is robust to the Trojan horse attack, is also given.Comment: 4 pages, 3 figures; published version in Phys. Rev. Let

    Practical lossless compression with latent variables using bits back coding

    Get PDF
    Deep latent variable models have seen recent success in many data domains. Lossless compression is an application of these models which, despite having the potential to be highly useful, has yet to be implemented in a practical manner. We present 'Bits Back with ANS' (BB-ANS), a scheme to perform lossless compression with latent variable models at a near optimal rate. We demonstrate this scheme by using it to compress the MNIST dataset with a variational auto-encoder model (VAE), achieving compression rates superior to standard methods with only a simple VAE. Given that the scheme is highly amenable to parallelization, we conclude that with a sufficiently high quality generative model this scheme could be used to achieve substantial improvements in compression rate with acceptable running time. We make our implementation available open source at https://github.com/bits-back/bits-back

    Comparing Segmentation by Time and by Motion in Visual Search: An fMRI Investigation

    Get PDF
    Abstract Brain activity was recorded while participants engaged in a difficult visual search task for a target defined by the spatial configuration of its component elements. The search displays were segmented by time (a preview then a search display), by motion, or were unsegmented. A preparatory network showed activity to the preview display, in the time but not in the motion segmentation condition. A region of the precuneus showed (i) higher activation when displays were segmented by time or by motion, and (ii) correlated activity with larger segmentation benefits behaviorally, regardless of the cue. Additionally, the results revealed that success in temporal segmentation was correlated with reduced activation in early visual areas, including V1. The results depict partially overlapping brain networks for segmentation in search by time and motion, with both cue-independent and cue-specific mechanisms.</jats:p

    On a self-sustained process at large scale in the turbulent channel flow

    Get PDF
    Large-scale motions, important in turbulent shear flows, are frequently attributed to the interaction of structures at smaller scale. Here we show that, in a turbulent channel at Re_{\tau} \approx 550, large-scale motions can self-sustain even when smaller-scale structures populating the near-wall and logarithmic regions are artificially quenched. This large-scale self-sustained mechanism is not active in periodic boxes of width smaller than Lz ~ 1.5h or length shorter than Lx ~ 3h which correspond well to the most energetic large scales observed in the turbulent channel

    Generalized Conformal Symmetry and Oblique AdS/CFT Correspondence for Matrix Theory

    Get PDF
    The large N behavior of Matrix theory is discussed on the basis of the previously proposed generalized conformal symmetry. The concept of `oblique' AdS/CFT correspondence, in which the conformal symmetry involves both the space-time coordinates and the string coupling constant, is proposed. Based on the explicit predictions for two-point correlators, possible implications for the Matrix-theory conjecture are discussed.Comment: LaTeX, 10 pages, 2 figures, written version of the talk presented at Strings'9

    Representations of p-brane topological charge algebras

    Full text link
    The known extended algebras associated with p-branes are shown to be generated as topological charge algebras of the standard p-brane actions. A representation of the charges in terms of superspace forms is constructed. The charges are shown to be the same in standard/extended superspace formulations of the action.Comment: 22 pages. Typos fixed, refs added. Minor additions to comments sectio
    • …
    corecore